ЛитМир - Электронная Библиотека

Очень часто животные пользуются информацией, которая лежит за пределами мира наших чувств и которую можно обнаружить только с помощью очень сложной аппаратуры. Это делает исследование более трудным, но и более интересным, поскольку перед нами открываются такие секреты природы, о которых еще несколько лет назад мы и не подозревали.

ГЛАВА 2

Тревожно прислушиваясь…

Прежде чем описывать механизмы функционирования уха, необходимо дать ясное представление о том, что такое звук. Звук представляет собой процесс распространения энергии в какой-либо среде, причем сама среда не движется. Звук может распространяться через твердую среду, такую, как кирпичная стена, и частицы кирпича не перемещаются при этом от одной стороны стены к другой, но они обязательно колеблются по мере прохождения звуковой волны.

Стоит лишь ударить рукой по струнам гитары или по камертону, как они начинают колебаться. Вибрирующая струна передает колебания частицам окружающего воздуха, а они в свою очередь — соседним частицам, создавая таким образом серию чередующихся сжатий и разрежений с усилением и ослаблением давления воздуха. Эти движения частиц графически изображаются в виде последовательности волн, вершины которых соответствуют сжатиям, а впадины между ними — разрежениям. Скорость движения этих волн в данной среде и есть скорость звука. В воздухе на уровне моря звук распространяется со скоростью около 1200 км/ч, а о самолетах, которые летают быстрее, говорят, что они преодолевают звуковой барьер. На больших высотах, где воздух разрежен, скорость звука падает, и самолеты преодолевают звуковой барьер на значительно меньшей скорости, чем 1200 км/ч. Напротив, в более плотной среде, например в воде, звук распространяется — быстрее, а в скале — еще быстрее.

Число волн, проходящих в секунду через какую-либо точку пространства, называется частотой звуковых колебаний. Обычно частоту колебаний (высоту звука) выражают в герцах (1 Гц соответствует одному колебанию в секунду). Высокими звуками мы называем звуки с высокой частотой колебаний, а низкими — звуки с низкой частотой. Расстояние между двумя соседними вершинами или впадинами называется длиной волны. Легко видеть, что с уменьшением длины волны частота колебаний, или число волн в секунду, будет увеличиваться (фиг. 4).

Чувства животных - i_005.png
Фиг. 4. Схематическое изображение звуковых волн (представьте, что волны распространяются поперек этой страницы)

Звуковые волны представляют собой попеременные сжатия и разрежения среды, в которой они распространяются, причем частицы этой среды не передвигаются вместе со звуком. Внизу приведено условное изображение одного цикла звуковых колебаний (одной звуковой волны). Частотой звука называется количество волн, проходящих через некоторую точку в течение одной секунды. Расстояние между вершиной и основанием полуволны соответствует амплитуде звука и характеризует его громкость.

Ухо человека или какого-либо животного воспринимает звук лишь в ограниченном диапазоне частот или длин волн. Волны давления с частотой ниже 20 Гц не воспринимаются нашим ухом как звуки, а ощущаются как вибрации. Вместе с тем колебания с частотой выше 20 000 Гц (так называемые ультразвуковые) также недоступны нашему уху. Ультразвуки не обладают никакими особыми свойствами; это просто удобный термин для обозначения звуков, слишком высоких для уха человека. Некоторые животные могут слышать звуки, частота которых гораздо больше 20 000 Гц; биологическое значение такого ультразвукового слуха будет обсуждаться в гл. 4.

Верхняя граница слуха у различных людей не одинакова, и обычно дети могут слышать более высокие звуки, чем взрослые. В качестве примера приведем рассказ о маленьком четырехлетнем мальчике, который ночью разбудил своих родителей, устроив большой переполох. Поскольку он редко просыпался по ночам, родители решили выяснить, в чем дело. Судя по рассказу мальчика, по комнате что-то летало, издавая писк. Ничего не обнаружив, родители попытались успокоить ребенка, но он еще больше разволновался и упорно настаивал на том, что в комнате что-то есть. Вдруг ребенок закричал, что оно снова начало пищать; чтобы успокоить мальчика, родители стали обыскивать каждый уголок комнаты и через некоторое время обнаружили летучую мышь, прицепившуюся к одной из занавесок. Мальчик слышал ее писк, а его родители — нет.

Следует отметить, что в данном случае летучая мышь посылала отнюдь не ультразвуковые импульсы, используемые для эхолокации (гл. 4). Это был обычный писк, которым пользуются мыши для общения друг с другом. Приведенный рассказ ясно показывает, что мы не можем допустить даже мысли, будто один человек воспринимает те же звуки, запахи или зрительные сигналы, что и другой. И когда мы изучаем животных, необходимо четко представлять, что диапазон их восприятия мира совершенно отличен от нашего.

Другой характеристикой звуковых волн является интенсивность, или громкость звука, которую определяют по расстоянию от пика или впадины волны до средней линии (фиг. 4). Интенсивность служит также и мерой энергии звука.

Звуковые волны, порожденные вибрирующей струной гитары, камертоном или каким-либо другим источником, собираются наружным ухом, или ушной раковиной (фиг. 5,7), и направляются по слуховому проходу к барабанной перепонке. Она представляет собой мембрану диаметром 1 см, которая колеблется, когда о нее ударяются звуковые волны, и служит, таким образом, первым звеном преобразователя. Эти колебания усиливаются и передаются к рецепторным клеткам внутреннего уха с помощью среднего уха.

Чувства животных - i_006.png
Фиг. 5. Схематическое изображение уха человека

Ушная раковина собирает звуковые колебания и передает их по слуховому проходу к барабанной перепонке. Оттуда они передаются с помощью трех ушных косточек — молоточка, наковальни и стремечка — к овальному окну улитки. В улитке звуковые волны превращаются в нервные импульсы. Евстахиева труба, соединяющая среднее ухо с ротовой полостью, выравнивает давление воздуха по обе стороны барабанной перепонки. Для простоты на схеме не показаны полукружные каналы, являющиеся органами равновесия.

1 — евстахиева труба; 2 — улитка; 3 — стремечко; 4 — овальное окно; 5 — наковальня; 6 — молоточек; 7 — ушная раковина; 8 — слуховой проход; 9 — барабанная перепонка; 10 — круглое окно.

Среднее ухо представляет собой камеру, называемую барабанной полостью, в которой находятся расположенные друг против друга три небольшие косточки: молоточек, наковальня и стремечко. Основание молоточка расположено напротив барабанной перепонки и колеблется в соответствии с ее колебаниями. Эти колебания молоточка через наковальню передаются к стремечку, которое находится в отверстии овального окна, ведущего во внутреннее ухо. Площадь овального окна в восемнадцать раз меньше площади барабанной перепонки, поэтому косточки среднего уха работают как усилитель, увеличивая давление, оказываемое на барабанную перепопку, в восемнадцать раз.

Чтобы предохранить внутреннее ухо от повреждения при усилении слишком громкого звука, к молоточку и наковальне прикреплены особые мышцы, которые, сокращаясь, отводят эти косточки от барабанной перепонки и овального окна. При этом звук может проходить во внутреннее ухо, но его интенсивность значительно ослабляется.

Внутреннее ухо состоит из двух заполненных жидкостью образований, находящихся внутри височной кости. Полукружные каналы служат органом равновесия, и поэтому при обсуждении слуха их можно не описывать. Под ними лежит улитка, представляющая собой трубку, свернутую в спираль. Строение улитки нагляднее всего можно представить, изобразив ее «раскрученной» (фиг. 6). Эта трубка длиной 31 мм разделена с помощью двух мембран — вестибулярной и базилярной — на три заполненных жидкостью параллельных канала: лестницу преддверия, кохлеарный проток и барабанную лестницу. Стремечко действует как поршень, и его колебания создают волны давления, которые распространяются вдоль по лестнице преддверия, проходят через узкую щель (helico-trema), расположенную на верхушке улитки, затем передаются в обратном направлении — по барабанной лестнице и в конце концов снова рассеиваются в пространстве среднего уха за счет выпячивания мембраны другого отверстия, круглого окна. Вестибулярная мембрана очень мягкая, и ее движения не играют никакой роли в восприятии звука, а базилярная мембрана твердая и колеблется вместе с волнами давления, распространяющимися по жидкости.

5
{"b":"129033","o":1}