ЛитМир - Электронная Библиотека
Содержание  
A
A

И все же роль математики в современной физике несравненно шире, чем просто удобного инструмента исследования. Под этой ролью часто понимают обобщение и систематизацию (в символах и формулах) явлений, наблюдаемых и устанавливаемых с помощью физического эксперимента, и последующее извлечение из формул дополнительной информации, не обнаруживаемой ни наблюдением, ни экспериментом и не вытекающей из непосредственно полученных данных. Но такое толкование роли математики далеко не исчерпывает всех ее достижений. Математика составляет сущность естественнонаучных теорий, и ее приложения в XIX-XX вв. на основе чисто математических конструкций представляются нам еще более удивительными, чем все ее прежние успехи, достигнутые в эпоху, когда математики оперировали понятиями, навеянными непосредственно физическими явлениями. Хотя было бы неверно приписывать одной лишь математике такие достижения современной науки, как радио, телевидение, самолет, телефон, телеграф, высококачественная звукозаписывающая аппаратура, рентгеновские лучи, транзисторы, атомная энергия (и, увы, атомная бомба), вклад математики более фундаментален и существен, чем вклад экспериментальной науки.

Независимо от того, сколь приемлемы приведенные выше объяснения эффективности математики, есть основания утверждать, что новая физика — наука не столько механическая, сколько математическая. Хотя Максвелл при создании теории электромагнитного поля пытался изобрести механическую модель эфира, в своем окончательном виде его теория была по существу математической; «физическая реальность», которую описывают уравнения Максвелла, представляет собой смутное, «бесплотное» понятие электромагнитного поля. Даже Ньютон построил свои законы движения как чисто математическую структуру.

Возможно, Эддингтон прав, и знанием математических соотношений и структур исчерпывается все, чем может нас порадовать физическая наука. Джинс добавляет, что математическое описание Вселенной и есть окончательная реальность. Используемые нами для большей наглядности картины и модели (очень модное ныне слово) — шаг в сторону от реальности. За пределы математических формул мы выходим на собственный страх и риск.

Поскольку математика — творение человека и с ее помощью мы открываем совершенно новые физические явления, люди создают отдельные части окружающего их мира: тяготение, электромагнитные волны, кванты энергии и т.д. Разумеется, математик работает не в пустоте, а руководствуется данными чувственного опыта и эксперимента. Существует некий субстрат физического факта, но даже там, где налицо какая-то физическая реальность, совершенная организация, полнота, уточнение и понимание достаются только с помощью математики.

Наше знание зависит от человеческого разума ничуть не меньше (если не больше), чем от реальностей окружающего мира. Разум влияет даже на чувственное восприятие. Восприятие дерева без сознания его «древесности» лишено смысла. Набор чувственных восприятий сам по себе лишен смысла. Люди с их разумом составляют часть реальности. Наука более не противопоставляет природу как объект исследования и человека как субъекта, занимающегося ее описанием. Объект и наблюдатель неразделимы.

Граница между математическим и эмпирическим знанием не абсолютна. Мы непрестанно вносим коррективы в наши наблюдения и в то же время видоизменяем наши теории так, чтобы они соответствовали новым наблюдениям и экспериментальным результатам. Цель усилий, предпринимаемых как в развитии теории, так и в совершенствовании эксперимента — всестороннее и непротиворечивое описание физического мира. Математика служит своего рода посредником между человеком и природой, между внутренним миром человека и окружающим его внешним миром.

Так мы приходим к бесспорному и неопровержимому выводу: математика и физическая реальность нераздельны. Математика — поскольку она говорит нам о составляющих физического мира и поскольку наше знание этого мира может быть выражено только в математических понятиях — столь же реальна, как столы и стулья. Границы нашего знания реальности существуют, но они постепенно расширяются.

Вполне возможно, что человек, введя некоторые ограниченные и даже искусственные понятия, только таким способом сумел «навести порядок» в природе. Созданная нами математика может оказаться не более чем рабочей схемой. Не исключено, что природа в действительности устроена гораздо сложнее и в основе ее нет никакого «плана». Но и тогда математика как метод исследования, описания и познания природы не знает себе равных. В некоторых областях ею исчерпывается все, что мы знаем. Если она и не есть сама реальность, то по крайней мере подходит к таковой ближе, чем любая другая область человеческой деятельности.

Хотя математика и является чисто человеческим творением, она открыла нам доступ к некоторым тайнам природы, чем позволила добиться успехов, превзошедших все ожидания. Как это ни парадоксально, но именно столь далекие от реальности математические абстракции дали человеку возможность достичь немалого. Сколь ни искусственно, порой поистине сказочно математическое описание, в нем есть своя «мораль». Для мыслящего ученого математическое описание всегда было неиссякаемым источником удивления, рожденного тем, что природа проявляет столь высокую степень соответствия математическим формулам. Заложены ли регулярные зависимости, выражаемые физическими законами, в самой природе и мы лишь открываем их, или их изобретает и применяет к природе разум ученого, в любом случае ученые должны надеяться, что их неустанный труд способствует более глубокому проникновению в тайны природы.

XIII

Математика и поведение природы

Весь предшествующий опыт убеждает нас в том, что природа представляет собой реализацию простейших математически мыслимых элементов. {15}

Альберт Эйнштейн

Естествознание с античных времен определяло наше отношение к природе, но его роль еще более возросла после того, как предсказания важнейших научных теорий были многократно подтверждены опытом. Основные философские течения строились на физической науке и, казалось бы, неопровержимых фактах, установленных ею.

Однако дальнейшее развитие физики и прежде всего создание теории электромагнетизма, теории относительности и квантовой механики вызвали необходимость пересмотра философских учений. В этой главе мы кратко обрисуем и сопоставим некоторые из старых и более новых направлений философии, формирующих наши взгляды на природу. Умонастроение любой эпохи, мышление и поведение общества определяются господствующим мировоззрением. В современном обществе представления об окружающем нас физическом мире во многом определяют всю систему наших взглядов.

Основное учение — имеющее, как мы увидим в дальнейшем, первостепенное значение само по себе, — на которое в той или иной мере опираются все остальные учения, получило название «механицизм». Не претендуя на строгость, суть механицизма можно сформулировать так: физический мир представляет собой гигантский механизм, части которого взаимодействуют между собой. Механизм действует без сбоев и ошибок, о чем свидетельствуют движения планет, регулярность чередования приливов и отливов, предсказуемость солнечных и лунных затмений. Части гигантского механизма — это непрерывно движущаяся материя. Движение обусловлено действием сил. Рассмотрим эти понятия более подробно.

В основе механицизма лежит понятие материи как некоторой телесной вещественной субстанции. Убеждение в том, что материя составляет основу всего сущего, восходит к древним грекам. Выдающиеся греческие философы наблюдали окружающий мир и, несмотря на свои весьма ограниченные возможности, всеми доступными им средствами исследовали природу. При этом они с готовностью переходили от немногочисленных наблюдений к широким философским обобщениям. Так, Левкипп и Демокрит выдвинули идею о том, что мир состоит из неразрушимых и неделимых атомов, существующих в пустоте. Аристотель строил материю из «четырех элементов» — земли, воды, воздуха и огня, но не из настоящих земли, воды, воздуха и огня, а из четырех сущностей, наделенных теми качествами, которые мы воспринимаем посредством наших органов чувств в четырех реальных аналогах этих «элементов».

вернуться

15

[7], т. 4, с: 184.

74
{"b":"149324","o":1}