ЛитМир - Электронная Библиотека
Содержание  
A
A

Все млекопитающие дышат воздухом атмосферы. Морским млекопитающим приходится для этого систематически выныривать на поверхность. Делать выдох-вдох. Один, два, а после длительного пребывания под водой иногда и пятнадцать. Потом снова скрываться под поверхностью воды на полминуты, минуту. Кашалоты, например, могут быть под водой и сто минут, кстати, точно так же, как и тюлени, например, байкальский. Поверхностные воды океана, глубины в десятки и сотни метров, наконец, чудовищные глубины в один-два километра освоены разными видами морских млекопитающих. Это не рекордные погружения, а повседневный образ жизни. Да и узнали мы об этом в общем недавно. Сначала по находкам животных, запутавшихся в орудиях лова или кабелях, установленных на определенной глубине, а затем с помощью современной измерительной аппаратуры.

Человек на одном вдохе может погрузиться под воду на минуту, полторы; профессиональные ныряльщики за жемчугом — на 2–2,5 минуты, редко на 4 минуты. Лишь отдельные уникальные личности типа Боба Крофта или автора книги могут перешагивать этот рубеж ценой огромной, напряженной, многолетней тренировки. Пока еще не раскрыт “секрет волшебной травы Глауко” и не созданы кислородные таблетки, а потому человек, отправляясь под воду, берет с собой запас кислорода в баллонах акваланга или присоединяется к длинному резиновому шлангу со сжатым воздухом. Что же позволяет морским млекопитающим обходиться под водой без акваланга или шланга так долго, как нам и не снилось?

Позвоночные вышли на сушу примерно 300 млн. лет назад, а спустя еще 240 млн. лет в ископаемых остатках мы обнаруживаем современных китообразных. Даже по историческим масштабам это порядочный отрезок времени, который позволил эволюционным механизмам изменчивости и отбора создать млекопитающих, прекрасно приспособленных к существованию в воде. Принципиально сохранился план строения предковой формы, но практически все системы и органы значительно изменились, стали идеально приспособленными к жизнедеятельности в новых условиях обитания. Добавим немного к сказанному в книге.

Строение дыхательной системы китообразных — дыхательное отверстие на “макушке” верхней теменной части головы, короткая широкая трахея, удлиненные легкие, мощная косая диафрагма и межреберная мускулатура — все приспособлено к короткому, взрывоподобному выдоху-вдоху за 0,7–1,0 секунды. Выдох для экономии времени может начинаться еще под водой, скорость потока воздуха у афалины — 10 л/с, а у маленькой морской свиньи весом 40 кг — около 5 л/с. Неспадающиеся жесткие или эластичные бронхи ветвятся и заканчиваются 457 млн. альвеол. Это подсчитано у той же морской свиньи, а у вдвое большего по весу человека имеется всего 150 млн. Альвеолы китов густо оплетены капиллярами, предназначенными для максимально быстрого обмена газов в системе “воздух — кровь”. Нет в альвеолах человека такой густой капиллярной сети.

Ранее полагали, что способность к длительному апноэ определяется большим количеством крови (до 15 % веса), поскольку в ней содержится и больший запас кислорода. Однако на поверку оказалось, что у китообразных, да и других морских (а также наземных) млекопитающих увеличение объема крови связано главным образом с увеличением скорости плавания или бегания. Количество гемоглобина, носителя кислорода, также обычно 14–17 % и опять-таки увеличивается до 21 % у скоростных видов дельфинов. Но зато мышцы буквально нашпигованы миоглобином, его в 3–5 раз больше, и потому они темно-красного, чуть ли не черного цвета. Миоглобин не только создает свой автономный запас кислорода в мышцах, но и обладает свойством втрое ускорять кислородный обмен. У новорожденного дельфина миоглобина мало, его количество увеличивается лишь с возрастом, но это генетически запрограммировано, и никакими тренировками этого не добиться. Вряд ли “человеку-дельфину” удастся обзавестись таким мощным запасом кислорода для автономной работы мышц при погружении в апноэ.

Интересны адаптации и сердечно-сосудистой системы. При погружении под воду отключается кровоснабжение мышц и большей части периферических органов. Они функционируют на собственных запасах кислорода, затем в них развивается и становится преобладающей анаэробная фаза с накоплением молочной кислоты, вынос которой в общее кровяное русло задерживается резким ослаблением или прекращением кровотока, что в свою очередь предотвращает резкий сдвиг рН крови и т. д. Эта схема обмена “аэробный — анаэробный” сохраняется и у человека-ныряльщика, но в гораздо менее специализированном виде.

Экономный расход запасов кислорода (50–56 %), накопленного в крови морских млекопитающих, осуществляется под водой рядом приспособительных функций. Уменьшается частота сердечных сокращений, появляется брадикардия. Кровоснабжение сохраняется лишь в органах, крайне чувствительных к дефициту кислорода, — центральной нервной системе и в органах чувств. Действуют “чудесные сети” — ветвления артериальных сосудов вплоть до образования мелкососудистых, губкоподобных сплетений. У китообразных их впервые описал Тисон еще в 1680 г. Эти интереснейшие образования известны не только у китообразных. Их назначение — сгладить редкий пульс, стабилизировать кровяное давление и замедлить скорость кровотока, чтобы максимально полно происходил газовый обмен: в ткани поступал кислород, а в кровь переходил углекислый газ. Разумеется, “человеку-дельфину” присоединить к имеющейся брадикардии систему “чудесных сетей” было бы весьма и весьма полезно, но от тренировки она у него не возникнет.

И это еще не все. Имеются специальные венозные расширения, лакуны, где скапливается отработанная венозная кровь, клапаны, сфинктеры на сосудах, бронхах, альвеолах, с помощью которых регулируется кровоток и многое другое, что обеспечивает китообразным нормальные условия для нахождения в апноэ до 90 % времени.

Эти особенности китообразных, равно как и ластоногих и сирен, обеспечивают им специфические по ритмике, но нормальные или даже комфортные условия обмена. Кислородная задолженность у них возникает лишь во время больших физических нагрузок — быстрого стремительного плавания или длительного пребывания на глубине, что связано, может быть, либо с поисково-охотничьим, либо оборонительным, а то и с социально-половым поведением. По этому признаку у них нет отличий от наземных существ.

Указанные морфологические и функциональные особенности дыхательной и сердечно-сосудистой системы морских млекопитающих поразительно эффективны. При каждом выдохе-вдохе они обменивают 90 % воздуха в легких, а человек — лишь 20 %. Мы все вдыхаем воздух, в котором около 21 % кислорода, но в выдыхаемом воздухе у морских млекопитающих его остается только 2–6 %, а у человека— 12–17 %. В целом дыхание морских млекопитающих в 3–5 раз более эффективное, чем у человека. Да, конечно, человеку, мечтающему нырять, как дельфин, надо учиться дышать, но при этом нельзя научиться за один дыхательный цикл сменить 90 % воздуха в легких — мешает хотя бы анатомия.

Гидростатическое давление — враг и помощник ныряльщика. Помощник в одном — наиболее полно использовать запас кислорода. На каждые 10 м погружения давление увеличивается на 1 атм. Поэтому вполне естественна первая реакция непосвященного человека: “Кит не может нырять на глубину двух километров! Это же с ума сойти — двести атмосфер! Его расплющит в лепешку!” Однако он ныряет и плавает на этой глубине, охотится, обменивается щелчками с сородичами, иногда его удается обмануть, и кашалот начинает “разговаривать” с судовым эхолотом, который тоже щелкает, чтобы измерить глубину океана.

В чем же дело? В несжимаемости жидкости, а как известно, мы состоим в основном из воды. Именно поэтому, воздействуя на покровы, гидростатическое давление передается на все системы и органы, оно всепроникающее, исключая некоторые костные полости. Китообразные и другие животные-ныряльщики обладают способностью автоматически поднимать давление изнутри этих несжимаемых костных образований за счет сосудистых сплетений, абсолютно точно передающих динамику изменения внешнего гидростатического давления на стенки костной полости, как и ткани снаружи. Но бывают и у китов баротравмы, это удалось установить при исследовании большой серии черепов дельфинов, собранных в Британском музее. Для “человека-дельфина” тут особых сложностей не предвидится, по крайней мере до глубины 100 м, — выровнять давление в среднем ухе, лобных и других пазухах черепа можно воздухом из легких. Пока во всех случаях погружений и пребывания человека в барокамерах или реальном океане на глубинах до 600 м давление в полостях компенсировалось газом через кровеносную систему и обычное дыхание. Несжимаемые нейтральные жидкости — пока фантазия. Некий предел глубине погружения человека в апноэ дает малая подвижность ребер его грудной клетки, концы которых у китов, как известно, не прикреплены к грудине, кроме нескольких первых. Однако это может стать критичным лишь для глубин более 150–200 м.

60
{"b":"303895","o":1}